THE EFFECT OF CAUSTIC ALKALI ON THE OXIDATION OF STANNOUS CHLORIDE WITH AIR.

By Susumu MIYAMOTO.

Received March 17, 1927. Published June 28, 1927.

S. W. Young⁽¹⁾ studied the effect of many substances on the oxidation of stannous chloride solution with free oxygen, but he did not studied the effect of alkali. The present research was carried out to know the effect of alkali by a modified method in connection with the former study on the effect of alkali on the oxidation of sodium sulphite with air.⁽²⁾

Experimental. The experimental procedure was quite the same with that described in the previous paper. Air was passed at constant velocity into the mixture of stannous chloride and sodium hydroxide solution. The total volume of the mixture was made to 40 c.c. in each case. A part o sodium hydroxide is used for the precipitation of stannous hydroxide, and the excess of alkali was given as C_{NaOH} in the following tables. After t-minutes the air current was stopped and the total amount of the mixture, acidified with hydrochloric acid, was poured into a known quantity of

⁽¹⁾ J. Am. Chem. Soc., 23 (1901), 119 and 450.

⁽²⁾ Miyamoto, This Journal, 2 (1927), 74.

iodine solution and the excess of iodine was titrated back with sodium thiosulphate solution. In the following tables, v is the volume of sodium thiosulphate solution of 0.0996 normal, equivalent to the amount of stannous chloride; k was calculated by $k = \frac{1}{t}(v_0 - v)$, v_0 being the value of v at t = 0, and $v_{outc.}$ was obtained by $v_{outc.} = v_0 - kt$, using the mean value of k.

Table 1 shows that the oxidation velocity is independent of the amount of stannous hydroxide. When the concentration of alkali is less than about

Table 1.

Temp.=20°C. Velocity of air=7.78 litres per hour.

C _{NaOH} Normal	t min.	v c.c.	voalc.	Æ	C _{NaOH} Normal	min.	v c.c.	vcalc.	k
	0	12.08	-			0	11.43	_	
	20	10.90	11.02	0.0590		10	9.13	9.28	0.230
0.0217	25	10.69	10.75	0.0556	0.5500	12	8.86	8.85	0.214
	30	10.52	10.49	0.0520	0.5500	15	8.29	8.20	0.209
	35	10.20	10.22	0.0537		20	7.40	7.13	0.202
	0	8.37				30	4.61	4.98	0.227
	20	7.37	7.31	0.0500		0	23.14	_	_
	30	6.85	6.78	0.0507		20	18.42	18.84	0.236
		- E 61				30	17.00	16.69	0.205
	0 20	5.61 4.55	4.55	0.0530		0	7.57		
	30	4.09	4.02	0.0507		10	5.48	5.42	0.209
		4.09	4.02	0.0507		15	4.46	4.34	0.209
			Mean:	0.0531			4.40		
	0	11.94						Mean:	0.215
1	9	9.82	9.87	0.236					
	12	9.19	9.18	0.229					
0.1081	15	8.59	8.49	0.223					
	20	7.40	7.34	0.227					
	30	4.98	5.04	0.232					
	0	6.23	_						
	12	3.45	3.47	0.232					
	. 17	2.33	2.33	0.229					
			Mean:	0.230					

0.2 normal in the given condition, the mixture contains white precipitates of stannous hydroxide, and the phenomenon can be explained by considering that the oxidation takes place only in the liquid phase. But in more

concentrated alkaline solutions all the precipitates dissolve, forming stannites, and it should be explained as in the case of sodium sulphite. (1)

The Effect of Sodium Hydroxide. The measurements were carried out in alkaline solutions of various concentrations, and the results are given in Table 2 and Fig. 1. The oxidation velocity of stannous hydroxide with air

C_{NaOH} Normal	$_{\mathrm{min.}}^{t}$	v c.c.	v _{calo} .	k	C _{NaOH} Norma	min.	v c.c.	voale.	k
	0	11.39	_			0	12.18		_
	40	10.47	10.49	0.0230		9	9.80	9.97	0.264
0.00595	50	10.26	10.27	0.0226	0.3252	12	9.20	9.23	0.248
	60	10.06	10.05	0.0222	0.5252	15	8.54	8.49	0.243
	70	9.87	9.82	0.0217		20	7.4 0	7.26	0.239
	Mean: 0.0224				25	6.33	6,03	0.234	
0.0217	See Table 1. 0.0531							Mean:	0.246
	0	12.22	_		0.5500	See T	able 1.		0.215
	20	10.3 2	10.43	0.0950		0	12.65		
0.04057	2 5	10.13	9.99	0.0836		10	10.90	10.97	0.175
	30	9.53	9.54	0.0897		12	10.68	10.63	0.175
	35	9.11	9.09	0.0889	1.130	15 .	10.10	10.13	0.170
ĺ			Mean:	0.0893		20	9.29	9.29	0.168
0.1081	See T	able 1.		0.230		30	7.77	7.61	0.163
								Mean:	0.168
	0	11.95	_	_					
	10	9.19	9.38	0.276		0	12.02	_	_
0.1706	15	8.17	8.09	0.252		20	9.32	9.50	0.135
	20	6.88	6.81	0.254	1.704	25	8.87	8.87	0.126
·	25	5.50	5.52	0.258		30	8.36	8.24	0.122
	30	4.57	4.24	0.246		36	7.69	7.48	0.120
			Mean:	0.257				Mean:	0.126
	0	12.32		_		0	7.53	- 1	_
	9	9.88	9.99	0.271		10	6.49	6.53	0.104
0.2204	12	9.20	9.21	0.260	2,312	12	6.37	6.33	0.0967
0.2204	14	8.85	8.69	0.256	2.312	15	5.92	6.03	0.107
	20	7.24	7.14	0.254		20	5.63	5.53	0.0950
	24	6.24	6.10	0.253		27	4.93	4.84	0.0963
-			Mean:	0.259				Mean:	0.0998

⁽¹⁾ Previous paper.

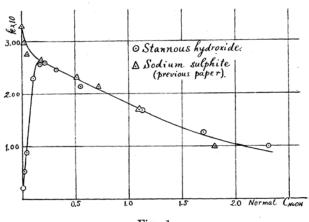


Fig. 1.

increases rapidly with the increase of the concentration of alkali until it attains a certain value and then decreases slowly. It was observed that the mixture contains white precipitates until the oxidation velocity attains almost its maximum value. In more concentrated alkaline solutions, all the stannous hydroxide dissolves forming stannites and the oxidation velocity was found to be the same as that of sodium sulphite. The results can be explained as follows.

The oxidation velocity increases until it attains the dissolution velocity of air with the increase of the concentration of alkali, which causes the formation of stannites. When the concentration of alkali increases still more, the dissolution velocity of air decreases, and consequently the oxidation velocity decreases. This assumption, which was also employed for the explanation of the oxidation velocity of sodium sulphite, was ascertained by the coincidence of their velocity constants as shown in Fig. 1. The values thus obtained can be regarded as the dissolution velocity of oxygen, when air was passed into 40 c.c. of solution in a test tube (diameter 3 cm.) through a glass tube (inside diameter=4 mm. outside diameter=6 mm.) at the rate of 7.78 litres per hour. From Fig. 1 we can calculate the approximate values of dissolution velocity of oxygen under the condition above described. Thus,

C _{NaOH} Normal	k	Dissolution velocity of oxygen
0.50	0.230	5.7×10^{-6} mols per minute.
1.00	0.180	4.5×10 ⁻⁶
1.50	0.136	3.4×10-6

The Effect of Temperature. The oxidation velocities at 30°C. and 40°C. are given in Table 3. The effect of temperature was small.

Table 3. Velocity of air=7.78 litres per hour.

Temp.	C _{NaOH} Normal	min.	v c.c.	voalo.	k
		0	11.57	_	
		30	8.99	9.16	0.0860
30°C.	0.0217	35	8.76	8.76	0.0803
		40	8.56	8.36	0.0753
		50	7.61	7.56	0.0792
		:	·	Mea	n: 0.0802
		0	11.14	1 - 1	_
		12	8.22	8.26	0.243
30°C.	0.5500	15	7.44	7.54	0.247
		20	6.40	6.34	0.237
		- 25	5.32	5.14	0.233
				Mea	n: 0.240
		0	10.35	-	_
		15	8.82	8.88	0.1020
40°	0.0217	20	8.41	8.39	0.0970
		25	7.86	7.90	0.0996
		40	6.65	6.44	0.0925
				Mea	n: 0.0978
		0	12.02		
		10	9.17	9.22	0.285
40°C.	0.5500	15	7.81	7.82	0.281
		20	6.50	6.42	0.276
		25	5.07	5.02	0.278
		,		Mea	n: 0.280

$$\frac{k_{30^{\circ}}}{k_{20^{\circ}}} = \frac{0.0802}{0.0531} = 1.51 \quad \frac{k_{40^{\circ}}}{k_{30^{\circ}}} = \frac{0.0978}{0.0802} = 1.22 \quad \text{When } C_{NaOH} = 0.0217 \text{ normal}$$

$$\frac{k_{30^{\circ}}}{k_{20^{\circ}}} = \frac{0.240}{0.215} = 1.12 \quad \frac{k_{40^{\circ}}}{k_{30^{\circ}}} = \frac{0.280}{0.240} = 1.17 \quad \text{When } C_{NaOH} = 0.5500 \text{ normal}$$

The Effect of the Velocity of Air Passed. It will be seen from Table 4 that a small change of the velocity of air current has not much influence on the oxidation velocity.

	Table 4.
Temp.=20°C.	$C_{NaOH} = 0.5500$ Normal.

Velocity of air litres/hour	t min.	v c.c.	veale.	k
	0	11.31		_
	15	8.13	8.26	0.212
6.67	20	7.11	7.25	0.210
	25	6.43	6.23	0.195
	30	5.35	5.22	0.199
				Mean: 0.203
	0	11.81	_	_
	9	9.65	9.70	0.240
10.00	15	8.35	8.30	0.231
	20	7.19	7.13	0.231
	25	5.96	5.96	0.234
				Mean: 0.234

Summary.

- (1) The oxidation velocity of stannous chloride in alkaline solutions with air was studied. It was found to be the same as that of sodium sulphite when the concentration of alkali is greater than about 0.2 normal under the given condition.
 - (2) The effect of temperature was small.
- (3) The dissolution velocity of oxygen in alkaline solutions was calculated indirectly.

The Institute of Physical and Chemical Research, Hongo, Tokyo.